
Micro-Processors and Assembly
Programming

References

• The 8086 Microprocessors Architecture, software and Interfacing techniques
By: Walter A. Triebel
• The 8086/8088 MPU, Architecture, programming and interfacing BY: Barry
B. Brey

Microprocessor
A microprocessor or  processor (sometimes abbreviated µP) is the heart  of the
computer  and  it  performs  all  the  computational  tasks,  calculations  and  data
processing etc. inside the computer.  Microprocessor is the brain of the computer. A
Central processing unit (CPU) in a computer system or handheld device consists
of one or more microprocessors.  The microprocessors can be classified based on
the following features:

1



Instruction Set

It is the set of the instructions that the Microprocessor can execute.

Bandwidth 

The number of bits processed by the processor in a single instruction.

4 bit. e.g. Intel 4004

 8 bit. e.g. Intel 8085, 8088, Zilog Z80, Z180

 16 bit. e.g. Intel 8086, 80186, 80286, 80386, 

 32 bit. e.g. Intel Pentium, Celeron, AMD Sempron 

 64 bit. e.g. AMD Athlon.

Clock Speed

Clock speed is measured in the MHz and it determines that how many instructions
a processor can processed.

The speed of  the  microprocessor  is  measured in  the  MHz or  GHz.  The
processor is also known as the CPU (Central Processing Unit).   It contains the
control  unit and  the  arithmetic  unit and  both  works  together  to  process  the
commands.  CPU is used in every computer whether it is a workstation, server or a
laptop.  CPU is a complete computational  engine that is designed as a chip.  It
starts the work when you turn on your computer. 

CPU is designed to perform the arithmetic and logical operations inside the
computer.  Common operations inside the computer include adding, subtracting,
multiplying, comparing the values and fetching the different numbers to process
them.  The  higher  the  CPU  clocks’  speed  the  more  efficient  will  be  the
performance of the computer.  

Computer’s  performance  is  also  influenced  by  the  system bus  architecture,
memory used, type of the processor and software program being running.  

Basic Block Diagram of Microprocessor:
     

Figure 1: Basic Block Diagram of Microprocessor

2



ALU – Performs all arithmetic and logical operations

Register array – Holds the data temporarily for processing

Control  Unit –  It  supervises/  monitors  all  the  operations  carried  out  in  the
computer.

Microcomputer Architecture
A computer system has three main components: a Central Processing Unit

(CPU) or processor, a  Memory Unit  and  Input Output Units  (devices). In any
microcomputer system, the component which actually processes data is entirely
contained  on  a  single  chip  called  Microprocessor  (MPU).  This  MPU  can  be
programmed using assembly language. Writing a program in assembly language
requires a knowledge of the computer hardware (or Architecture) and the details of
its instruction set.

The main  internal hardware  features of a computer are the processor, memory
and registers (registers are special processor components for holding address and
data).

The  external hardware  features are the computer Input/Output devices such as
keyboard, monitor…
Software  consists of the operating system (O.S) and various programs and data
files stored on disk.

Inside any computer based on a member of the 8086 family, the basic arrangement
of the main components is shown in Figure 2.

3



Figure 2: Data flow between the main components of an 8086
family computer.

Information is sent from one main component to another along the communication
channel, which is often called the System Bus. Both programs and data are stored
in  the  memory.  The  Bus  Interface  Unit  (BIU)  within  the  MPU  fetches  new
instruction  or  data  as  necessary.  It  is  also  the  BIU jobs  to  interpret  or  decode
instruction and to route results to their proper destination.

The MPU Execution Unit carries out any arithmetic which is required, including
memory calculation. Microcomputer memories consist of a collection of chips of
two kinds Read Only Memory (ROM) and Random Access Memories (RAM).

System Bus
The components of the computer system must communicate with each other and
with the outside world. Although it may be possible to connect each component to
the CPU separately as  a  practical  matter  this  would require  too many physical
connects.  To  keep  the  number  of  connections  manageable,  the  processor  is
connected to memory and all peripherals using a bus. A Bus is a bunch of wires,
and  electrical  path  on  the  printed  IC  to  which  everything  in  the  system  is
connected.

4



There are three types of Bus:
1- Address Buss (AB):  the width of AB determines the amount of physical

memory addressable by the processor.

2- Data Bus (DB):  the width of DB indicates the size of the data transferred
between the processor and memory or I/O device.

3- Control  Bus  (CB):  consists  of  a  set  of  control  signals,  typical  control
signals includes memory read, memory write, I/O read, I/O write, interrupt
acknowledge, bus request. These control signals indicates the type of action
taking place on the system bus.

Personal Computer (PC) Components
The main component of the PC is its System Board (or mother board). It contains
the  processor,  co-processor,  main  memory,  connectors,  and  expansion  slots  for
optional cards. 

The slots and connectors provide access to such components as ROM, RAM, hard
disk,  CD-ROM drive, additional memory, video unit,  keyboard, mouse, parallel
and serial device, sound adapter and cache memory (the processor use high speed
cache memory to decrease its need to access the slower main memory). A bus with
wires  attached  to  the  system  board  connect  the  components.  It  transfers  data
between the processor, memory and external devices.

A. The processor
The CPU or processor acts as the controller of all actions or services provided by
the system. The operations of a CPU can be reduced to three basic steps:  fetch,
decode, and execute. Each step includes intermediate steps, some of which are:

1- Fetch the next instruction:
- Place it in a holding area called a queue.
- Decode the instruction.

2- Decode the instruction
- Perform address translation.
- Fetch operand from memory.

5



3- Execute the instruction.
- Perform the required calculation.
- Store results in memory or register.
- Set status flag attached to the CPU.

Figure 3 shows a block diagram of a simple imaginary CPU. The CPU is divided
into two general parts. Arithmetic Logic Unit (ALU) and Control Unit (CU).

- The ALU carry Arithmetic, logical, and shifting operations.
- The CU fetches data and instruction, and decodes addresses for the ALU.

Figure 3: A block diagram of a simple CPU.

B. Memory

6



The memory of a computer system consist of tiny electronic switches, with each
switch set in one of two states: open or close. It is however more convenient to
think of these states as 0 and 1.
Thus each switch can represent a binary digit or bit, as it is known, the memory
unit consists of millions of such bits, bits are organized into groups of eight bits
called byte.

Memory can be viewed as consisting of an ordered sequence of bytes. Each byte in
this memory can be identified by its sequence number starting with 0, as shown in
Figure 4. This is referred to as memory address of the byte. Such memory is called
byte addressable memory.

8086  can address up to  1 MB (220 bytes)  of  main memory this  magic number
comes from the fact that the address bud of the 8086 has 20 address lines. This
number is referred to as the Memory Address Space (MAS). The memory address
space of a system is determined by the address bus width of the CPU used in the
system. The actual memory in a system is always less than or equal to the MAS.

Figure 4: Logical view of the system memory

7



Two basic memory operations
The memory unit supports two fundamental operations: Read and Write. The read
operation read a previously stored data and the write operation stores a value in
memory. See Figure 5

Figure 5: Block diagram of system memory

Steps in a typical read cycle:
1- Place the address of the location to be read on the address bus.
2- Activate the memory read control signal on the control bus.
3- Wait for the memory to retrieve the data from the address memory location.
4- Read the data from the data bus.
5- Drop the memory read control signal to terminate the read cycle.

Steps in a typical write cycle:
1- Place the address of the location to be written on the address bus.
2- Place the data to be written on the data bus.
3- Activate the memory write control signal on the control bus.
4- Wait for the memory to store the data at the address location.
5- Drop the memory write control signal to terminate the write cycle.

Addresses:  group of bits which are arranged sequentially in memory, to enable
direct access, a number called address is associated with each group. Addresses

8



start at 0 and increase for successive groups. The term location refers to a group of
bits with a unique address. Table 1 represents Bit, Byte, and Larger units.

Table1: Bit, Byte, and Larger units.

Types of memory
The memory unit can be implemented using a variety of memory chips- different
speeds,  different  manufacturing  technology,  and  different  sizes.  The  two  basic
types are RAM and ROM.

1- Read Only Memories (ROM):

ROMs allow only read operation to be performed. This memory is non-volatile.
Most ROMs are programmed and cannot be altered. This type of ROM is cheaper
to manufacture than other types of ROM. The program that controls the standard
I/O functions (called BIOS) is kept in ROM, configuration software.

Other types of ROM include:
- Programmable ROM (PROM).
- Erasable PROM (EPROM) is read only memory that can be reprogrammed

using special equipment.
- EAPROM, Electrically Alterable Programmable ROM is a Read Only    

Memory that is electrically reprogrammable.

9



2- Read/Write Memory

Read/Write memory is commonly referred to as Random Access Memory (RAM);
it is divided into static and dynamic. Static RAM (SRAM): used for implementing
CPU registers and cache memories. Dynamic RAM (DRAM), the bulk of main
memory in a typical computer system consists of dynamic ram.

Dynamic RAM: main memory, or RAM is where program, data are kept when a
program is running. It must be refreshed with in less than a millisecond or losses
its contents.

Static RAM,  used for special  high speed memory called cache memory which
greatly improves system performance. Static RAM keeps its value without having
to be refreshed.

C. INPUT/OUTPUT
Input/output (I/O) devices provide the means by which the computer system can
interact with the outside world. Computers use I/O devices (also called peripheral
devices) for two major purposes:

1- To communicate with the outside world and,
2- Store data.

Devices that are used to communicate like, printer, keyboard, modem, Devices that
are used to store data like disk drive. I/O devices are connected to the system bus
through  I/O controller  (interface) – which acts as interface between the system
bus and I/O devices.

There are two main reasons for using I/O controllers

1-  I/O devices exhibit different characteristics and if these devices are connected
directly, the CPU would have to understand and respond appropriately to each I/O
device.  This  would cause the CPU to spend a  lot  of  time interacting with I/O
devices and spend less time executing user programs.

2- The amount of electrical power used to send signals on the system bus is very
low. This means that the cable connecting the I/O device has to be very short (a

10



few centimeters at most). I/O controllers typically contain driver hardware to send
current over long cable that connects I/O devices. See Figure 6.

Figure 6: Block diagram of a generic I/O device interface.

Evolution of Intel Microprocessor
The principle way in which MPU & microcomputer are categorized in term of the
maximum number of binary bit in the data they process that is, their word length.
Processor vary in their speed, capacity of memory, register and data bus, below are
a brief description of various Intel processor in Table 2. 

8088  and  8086  functionally identical but  8088  lower performance,  80186  run all
8088  and  8086  software,  but  have  10 new instructions.  80188  in  function  are
identical to  80186  but lower performances.  80286  run all  8086,  80186  program,
but has extra instruction, more powerful than  8086. 80386  has various operation
mode, which allow it to act as 80286 chip or multiple 8086 chip, as well as a set of
instruction capable of 32 bit operations such as arithmetic.

11



Table 2: Different Microprocessor features descriptions

Execution Unit and Bus Interface Unit
In the Figure 7, the processor is partitioned into two logical units:

An Execution Unit (EU) and Bus Interface Unit (BIU). The role of the EU is to
execute instruction, whereas the BIU delivers instruction and data to EU.

The EU contains ALU, CU and number of registers. This feature enables the EU
to execute instructions and perform arithmetic and logical operations. The most
important function of BIU is to manage the bus control unit,  segment registers
instruction queue.  The BIU controls the busses that  transfer  data to the EU, to
memory,  and  to  external  input/output  devices,  whereas  the  segment  registers
control the memory addressing.

12



Figure 7: Execution unit and Bus interface unit.

13



Another  function  of  the  BIU is  to  provide  access  to  instructions,  because  the
instructions for a program that  is  executing are kept in memory,  the BIU must
access instruction from memory and place them in an instruction queue, which
varies in size depending on the processor. This feature enables the BIU to look
ahead and prefetch instructions,  so that  there is always a queue of instructions
ready to execute.

The EU and BIU work in parallel, with the BIU keeping one step ahead. The EU
notifies the BIU when it needs access to data in memory or I/O devices. Also the
EU request machine code instructions from the BIU instruction queue.  The top
instruction is the currently executable one, and while the EU is occupied executing
an  instruction,  the  BIU  fetch  another  instruction  from  memory.  This  fetching
overlaps with execution and speeds up processing.

Addressing Data in Memory
Depending on the model, the processor can access one or more bytes of memory at
a time. Consider the Hexa value (0529H) which requires two bytes or one word of
memory. It consist of high order (most significant) byte 05 and a low order (least
significant) byte 29.
The processor store the data in memory in reverse byte sequence    i.e. the low
order byte in the low memory address and the high order byte in the high memory
address. For example, the processor transfer the value 0529H from a register into
memory address 04A26 H and 04A27H like this:

14



The processor expects numeric data in memory to be in reverse byte sequence and
processes the data accordingly, again reverses the bytes, restoring them to correctly
in the register as hexa 0529H.
When programming in assembly language, you have to distinguish between the
address of a memory location and its contents. In the above example the content of
address 04A26H is 29, and the content of address 04A27H is 05.

There are two types of addressing schemes:

1. An Absolute Address, such as 04A26H, is a 20 bit value that directly references
a specific location.

2. A Segment Offset Address, combines the starting address of a segment with an
offset value.

Segments and Addressing
Segments are special area defined in a program for containing the code, the data,
and the stack.  Segment Offset  within a program, all memory locations within a
segment are relative to the segment starting address. The distance in bytes from the
segment address to another location within the segment is expressed as an  offset
(or displacement).

15



To  reference  any  memory  location  in  a  segment,  the  processor  combine  the
segment address in a segment register with the offset value of that location, that is,
its distance in byte from the start of the segment.

Specifying addresses
To represent a segment address and its relative offset we use the notation:

Segment: offset

Thus 020A:1BCD denotes offset 1BCDH from segment 020AH.

The actual address it refers to is obtained in the following way:

1- Add zero to the right hand side of the segment address.
2- Add to this the offset.

Hence the actual address referred to by 020A:1BCD is 03C6D. 

Address Bus in the  8086  is 20 bits wide (20 lines) i.e. the processor can access
memory of size 220 or 1048576 bytes (1MB).

16



Instruction Pointer = 16 bit register which means the processor can only address 0
– 216 (65535) bytes of memory. But we need to write instructions in any of the
1MB of memory. This can be solved by using memory segmentation., where each
segment register is 16-bit (this 16-bit is the high 16-bit of Address Bus (A4- A19))
i.e.  each of the segment registers represent  the actual  address after  shifting the
address 4-bit to get 20 bits.

Registers

Registers are 8, 16, or 32-bit high speed storage locations directly inside the CPU,
designed to be accessed at much higher speed than conventional memory.

17



Figure 8: Intel 16-bit registers

The CPU has an internal data bus that is generally twice as wide as its external data
bus.

Data Registers: The general purpose registers,  are used for arithmetic and data
movement. Each register can be addressed as either 16-bit or 8 bit value. Example,
AX register is a 16-bit register, its upper 8-bit is called AH, and its lower 8-bit is
called AL. Bit 0 in AL corresponds to bit 0 in AX and bit 0 in AH corresponds to
bit 8 in AX. See Figure 9.

18



Figure 9: AX register

Instructions can address either 16-bit data register as AX, BX, CX, and DX or 8-bit
register as AL, AH, BL, BH, CL, CH, Dl, and DH. If we move 126FH to AX then
AL would immediately 6FH and AH = 12H.

* Each general purpose register has special attributes:

1- AX (Accumulator): AX is the accumulator register because it is favored by
the CPU for arithmetic operations. Other operations are also slightly more
efficient when performed using AX.

2- BX (Base): the BX register can hold the address of a procedure or variable.
Three other registers with this ability are SI, DI and BP. The BX register can
also perform arithmetic and data movement.

3- CX (Counter):  the CX register acts as a counter for repeating or looping
instructions. These instructions automatically repeat and decrement CX.

4- DX  (Data):  the  DX  register  has  a  special  role  in  multiply  and  divide
operation. When multiplying for example  DX  hold the high 16 bit of the
product.

* Segment Registers: the CPU contain four segment registers, used as base
location for program instruction, and for the stack.

19



1- CS  (Code  Segment):  The  code  segment  register  holds  the  base
location of all executable instructions (code) in a program.

2- DS (Data Segment):  the data  segment  register  is  the  default  base
location  for  variables.  The CPU calculates  their  location using the
segment value in DS.

3- SS  (Stack  Segment):  the  stack  segment  register  contain  the  base
location of the stack.

4- ES (Extra Segment): The extra segment register is an additional base
location for memory variables.

* Index registers: index registers contain the offset of data and instructions. The
term offset refers to the distance of a variable, label, or instruction from its base
segment. The index registers are:

1- BP (Base Pointer):  the  BP register contain an assumed offset from the
stack segment register, as does the stack pointer. The base pointer register
is often used by a 23 subroutine to locate variables that were passed on
the stack by a calling program.

2- SP (Stack Pointer): the stack pointer register contain the offset of the top
of the stack. The stack pointer and the stack segment register combine to
form the complete address of the top of the stack.

3- SI  (Source  Index):  This  register  takes  its  name  from  the  string
movement instruction,  in which the source string is pointed to by the
source index register.

4- DI (Destination Index): the DI register acts as the destination for string
movement instruction.

Status and Control register:

20



1- IP (Instruction Pointer): The instruction pointer register always contain the
offset of the next instruction to be executed within the current code segment.
The instruction pointer and the code segment register combine to form the
complete address of the next instruction. 

2- The Flag Register: is a special register with individual bit positions assigned to
show the status of the CPU or the result of arithmetic operations. The Figure 10
describes the 8086/8088 flags register:

Figure 10: Flag Register.

There two basic types of flags: (control flags and status flags)

1- Control  Flags:  individual  bits  can  be  set  in  the  flag  register  by  the
programmer to control the CPU operation, these are - The  Direction Flag
(DF): affects block data transfer instructions, such as MOVS, CMPS, and
SCAS. The flag values are 0 = up and 1 = down.

- The  Interrupt flag (IF):  dictates whether or not a system interrupt can
occur. Such as keyboard, disk drive, and the system clock timer. A program
will  sometimes  briefly  disable  the  interrupt  when  performing  a  critical
operation that cannot be interrupted. The flag values are  1 = enable,  0 =
disable.

- The Trap flag (TF): Determine whether or not the CPU is halted after each
instruction. When this is set, a debugging program can let a programmer to
enter single stepping (trace) through a program one instruction at a time.

21



The  flag  values  are  1  =  on,  0  =  off.  The  flag  can  be  set  by  INT 3
instruction.

2- Status Flags: The status flags reflect the outcomes of arithmetic and logical
operations performed by the CPU, these are:

-  The  Carry  Flag  (CF):  is  set  when  the  result  of  an  unsigned  arithmetic
operation is too large to fit into the destination for example, if the sum of 71
and 99 where stored in the 8-bit register AL, the result cause the carry flag to
be 1. The flag values = 1 = carry, 0 = no carry.

- The Overflow (OF): is set when the result of a signed arithmetic operation is
too  wide  (too  many  bits)  to  fit  into  destination.  1  =  overflow,  0  =  no
overflow.

-  Sign  Flag  (SF):  is  set  when  the  result  of  arithmetic  of  logical  operation
generates a negative result, 1= negative, 0 = positive.

-  Zero Flag (ZF):  is set when the result of an arithmetic of logical operation
generates  a  result  of  zero,  the  flag  is  used  primarily  by  jump  or  loop
instructions to allow branching to a new location in a program based on the
comparison of two values. The flag value = 1 = zero, & 0 = not zero.

- Auxiliary Flag: is set when an operation causes a carry from bit 3 to bit 4 (or
borrow from bit 4 to bit 3) of an operand. The flag value = 1 = carry, 0 = no
carry.

- Parity Flag: reflect the number of 1 bit in the result of an operation. If there is
an even number of bit, the parity is even. If there is an odd number of bits,
parity is odd. This flag is used by the OS to verify memory integrity and by
communication software to verify the correct transmission of data.

Instruction Execution and Addressing

An assembly language programmer writhe a program in symbolic code and uses
the  assembler  to translate it into  machine code  as .EXE program. For program
execution, the system looks only the machine code into memory.

22



Every  instruction  consists  of  at  least  one  operation,  such  as  MOV,  ADD.
Depending on the operation, an instruction may also have one or more operands
that reference the data the operation is to process.

The basic steps the processor takes in executing an instruction are:

1. Fetch the next instruction to be executed from memory and place it in the
instruction queue.

2. Decode the instruction calculates addressed that reference memory, deliver
data to the Arithmetic Logic Unit, and increment the instruction pointer (IP)
register.

3. Execute the instruction, performs the request operation, store the result in a
register or memory, and set flags such as zero or carry where required.

For an .EXE program the  CS register provides the address of the beginning of a
program code segment, and  DS provide the address of the beginning of the data
segment.

The CS contains instructions that are to be executed, where as the DS contain data
that the instruction reference. The  IP register indicates the offset address of the
current  instruction  in  the  CS  that  is  to  be  executed.  An  instruction  operand
indicates an offset address in the DS to be referenced.

Consider an example in which the program loader has determined that it is to be
load on .EXE program into memory beginning at  location  05BE0H.  The loader
accordingly initialize CS with segment address 05BE[0]H and IP with zero.

CS: IP together determine the address of the first instruction to execute 05BE0H +
0000H = 05BE0H. In this way the first instruction in CS being execution, if the first
instruction is two byte long, the processor increment  IP by  2, so that , the next
instruction to be executed is 05BE0H + 0002H = 05BE2H.

Assume the program continues executing, and IP contain the offset 0023H. CS: IP
now determine the address of the next instruction to execute, as follows:

23



EX: let's say that  MOV instruction beginning at  0FC03H copies the content of a
byte in memory into the AL register. The byte is at offset 0016H in the DS. Here are
the machine code and the symbolic code for this operation.

The second and third byte contains the offset value in reversed byte sequence. In
symbolic code, the operand [0016] in square brackets (an index operator) indicates
an offset value to distinguish it from the actual storage address 16.

Let say that the program has initialized the DS register with DS address 05D1[0]H.
To access the data item, the processor determines its location from the segment
address in DS + the offset (0016H) in the instruction. Operand become DS contain
0FD1[0]H, the actual location of the reference data item is

24



Assume the address  05D26H contain  4AH, the processor now extract the  4AH at
address 05D26H and copy it into AL register.

An instruction may also access more than one byte at a time
EX:  Suppose an instruction is to store the content of the  AX  register (0248H) in
two adjacent byte in the DS beginning at offset 0016H.

The symbolic code MOV [0016], AX

The processor stores the two byte in memory in revered byte sequence as

Another instruction,  MOV AX, [0016],  subsequently could retrieve this byte by
copy them from memory back into AX. The operation reverses (and corrects) the
byte in AX as:

Number of Operands
Operands specify the value an instruction is to operate on, and where the result is
to be stored. Instruction sets are classified by the number of operands used. An
instruction may have no, one, two, or three operands.

25



1. Three-Operand instruction:
In instruction that have three operands, one of the operand specifies the destination
as an address where the result is to be saved. The other two operands specify the
source either as addresses of memory location or constants.

EX: A=B+C
ADD destination, source1, source2
ADD A,B,C

EX: Y=(X+D)* (N+1)

ADD T1, X, D
ADD T2, N, 1
Mul Y, T1, T2

2. Two operand instruction
In this type both operands specify sources.  The first  operand also specifies the
destination address after the result is to be saved. The first operand must be an
address in memory, but the second may be an address or a constant.

ADD destination, source
EX: A=B+C

MOV A, B
ADD A, C

EX: Y=(X+D)* (N+1)

MOV T1, X
ADD T1, D
MOV Y, N
ADD Y, 1
MUL Y, T1

3. One Operand instruction
Some computer have only one general purpose register, usually called on Acc. It is
implied as  one of  the  source operands and the destination operand in memory
instruction the other source operand is specified in the instruction as location in
memory.

26



ADD source

LDA source; copy value from memory to ACC.
STA destination; copy value from Acc into memory.

EX:     A=B+C

LDA B
ADD C
STA A

 EX: Y=(X+D)* (N+1)

LDA X
ADD D
STA T1
LDA N
ADD 1
MUL T1
STA Y

4. Zero Operand instruction
Some computers  have arithmetic  instruction in which all  operands are implied,
these zero operand instruction use a stack, a stack is a list structure in which all
insertion and deletion occur at one end, the element on a stack may be removed
only  in  the  reverse  of  the  order  in  which  they  were  entered.  The  process  of
inserting an item is called Pushing, removing an item is called Popping.

Computers that use Zero operand instruction for arithmetic operations also use one
operand PUSH and POP instruction to copy value between memory and the stack.

PUSH source;  Push the value of the memory operand onto the
Top of the stack.

POP destination; POP value from the Top of the stack and copy it
into the memory operand.

27



Assembly Language
Instruction

Assembly  language
instructions  are  provided  to
describe  each  of  the  basic
operations  that  can  be
performed  by  a
microprocessor.  They  are
written  using  alphanumeric
symbols instead of the 0s and

1s of the microprocessor's machine code. Program written in assembly language
are called source code. An assembly language description of this instruction is 

ADD AX, BX

In tins example, the contents of BX and AX are added together and their sum is put
in  AX.  Therefore,  BX  is  considered  to  be  the  source  operand  and  AX  the
destination operand.

Here is another example of an assembly language statement: 

LOOP:       MOV AX, BX ; COPY BX INTO AX

This instruction statement starts with the word LOOP. It is an address identifier for
the instruction MOV AX, BX. This type of identifier is called a label or tag. The
instruction is followed by "COPY BX INTO AX." This part of the statement is
called  a  comment.  Thus  a  general  format  for  writing  and  assembly  language
statement is:

LABEL:         INSTRUCTION      ; COMMENT

The 8086 Addressing Mode
When the 8086 executes an instruction, it performs the specified function on data.
The data are called its operands and may be part of the instruction reside in one of
the internal registers of the 8086, stored at an address in memory, or held at an I/O
port. To access these different types of operands, the 8086 is provided with

28



Various addressing modes:

1. Register Addressing Mode

With  the  register  addressing mode,  the  operand  to  be  accessed  is  specified  as
residing in an internal register of the 8086, an example of an instruction that uses
this addressing mode is

MOV AX, BX

This  stands  for  move  the  contents  of  BX,  the  source  operand,  to  AX,  the
destination operand. Both the source and destination operands have been specified
as the content of the internal registers of the 8086. See Figure 11(a, b).

2. Immediate Addressing Mode

If a source operand is part of the instruction instead of the contents of a register or
memory location, it represents what is called an immediate operand and is accessed
using the immediate  addressing mode.  Typically,  immediate  operands represent
constant data. Immediate operands can be either a byte or word of data. In the
Instruction 

MOV AL, 015H

The source operand 15H is an example of a byte-wide immediate source operand.
Note that the value of the immediate operand must always be preceded by a zero.
See Figure 12(a, b).

29



Figure 11(a): Register addressing mode before execution.

30



Figure 11(b): Register addressing mode after execution.

31



Figure 12(a): Immediate addressing mode before execution.

32



Figure 12(b): Immediate addressing mode after execution.

3. Direct Addressing Mode

Direct addressing differs from immediate addressing in that the locations following
the instruction opecode hold an  effected memory address (EA)  instead of data.
This effective address is a 16-bit offset of the storage location of the operand from
the  current  value  in  the  data  segment  (DS)  register.  EA is  combined  with  the
contents of DS in the BIU to produce the physical address for its source operand
is

MOV CX, BETA

33



This stands for move the contents of the memory location which is offset by BETA
from the current value in DS into internal register CX. See Figure 13(a, b). Notice
that the value assigned to constant BETA is 1234H.

PA = 02000H + 1234H

                                                       = 03234H

4. Register Indirect Addressing Mode

Register  indirect  addressing  is  similar  to  direct  addressing  in  that  an  effective
address  is  combined  with  the  contents  of  DS  to  obtain  a  physical  address.
However, it differs in the way the offset is specified. This time EA resides in either
a pointer register or index register within the 8086. The pointer register can be
either BX or BP and the index register can be SI or DI.

MOV AX, [SI]

This instruction moves the contents of the memory location offset by the value of
EA in SI from the current value in DS to the AX register. See Figure 14(a, b). SI
contains 1234H and DS contains 0200H.

PA = 02000H + 1234H

                                                       = 03234H

34



Figure 13(a): Direct Addressing mode before execution.

35



Figure 13(b): Direct Addressing mode after execution.

Figure 14(a): Register Indirect Addressing before execution.

36



Figure 14(b): Register Indirect Addressing mode after execution.

5. Based Addressing Mode

In the based addressing mode, the physical address of the operand is obtained by
adding a direct or indirect displacement to the contents of either BX or BP and the
current  value  in  DS and  SS,  respectively.  A MOV instruction  that  uses  based
addressing to specify the location of its destination operand is as follows:

MOV [BX].BETA, AL

As shown in Figure 15(a,b) the fetch and execution of this instruction causes the
BIU to calculate the physical address of the destination operand from the contents
of DS, BX, and the direct displacement. The result is

PA = 02000H + 1000H + 1234H

                                               = 04234H

37



6. Indexed Addressing Mode

Indexed addressing works identically to the based addressing, it uses the contents
of one of the index registers, instead of BX or BP, in the generation of the physical
address, here is an example: 

MOV AL, ARRAY[SI]

The example in Figure 16(a,b) shows the result of executing the MOV instruction.
First the physical address for the source operand is calculated from DS, SI, and the
direct displacement.

PA = 02000H + 2000H + 1234H

                                               = 05234H

Then the byte of data stored at this location, which is BEH is read into lower byte
AL of the accumulator register.

38



Figure 15(a): Based Addressing before execution.

Figure 15(b): Based Addressing mode after execution.

39



Figure 16(a): Direct Indexed Addressing before execution.

40



Figure 16(b): Direct Indexed Addressing mode after execution.
7. Based Indexed Addressing Mode

Combining the based addressing mode and the indexed addressing mode together
results in a new, more powerful mode known as based indexed addressing. Let us
consider an example of a MOV instruction using this type of addressing.

MOV AH, [BX].BETA[SI]

An  example  of  executing  this  instruction  is  illustrated  in  Figure  17(a,b).  The
address of the source operand is calculated as

PA = 02000H + 1000H + 1234H + 2000H

                                     = 06234H

Execution of this instruction causes the Value stored at this location to be written
into AH.

8. String Addressing Mode

41



The string instructions of the 8086's instruction set automatically use the source
and destination index registers to specify the effective addresses of the source and
destination operands, respectively. The move string instruction 

MOVS

 is an example. Notice that neither SI nor DI appears in the string instruction, but
both are used during its execution.

Figure 17(a): Based Indexed Addressing before execution.

42



Figure 17(b): Based Indexed Addressing mode after execution.
9. Port Addressing Mode

Port addressing is used in conjunction with the IN and OUT instructions to access
input and output ports. Any of the memory addressing modes can be used for the
port address for memory mapped ports. For ports in the I/O address space, only the
Direct  addressing  mode  and  an  Indirect  addressing  mode  using  DX  are
available.  For  example,  Direct  addressing  of  an  input  port  is  used  in  the
instruction

IN AL, 15H

This stands for input the data from the byte wide input port at address 15H of the
I/O address space to register  AL. Next,  let  us consider another example.  Using
Indirect port addressing for the source operand in an IN instruction, we get:

IN AL, DX

It means input the data from the byte wide input port whose address is specified by
the contents of register DX. For instance, if DX equals 1234H the contents of the
port at this I/O address are loaded into AL.

43



Problems:

1. Which register holds a count for some instruction?
2. What is the purpose of the IP register?
3. The carry flag bit is set by which arithmetic operation?
4. A number that contain 3 one bit said to have---------- parity?
5. Find the memory address of the next instruction execute by the micro processor
for the following CS:IP combinations:

a. CS=1000H    and     IP=2000H

b. CS=2000H    and     IP=1000H

6. Which register or registers are used as an offset address for string instruction
destination in the microprocessor?
7. The stack memory is addressed by a combination of the-------- segment plus -----
------ offset.
8. Which registers of the 8086 are used in memory segmentation?
9.  Categorize each flag bit  of  the 8086 as either  a control  flag or  as  a flag to
monitor the effect of instruction execution.
10.  Identify  the  three  part  of  an  assembly  language  instruction  in  each  of  the
following statement:

AGAIN: ADD AX, CX; ADD THE REGISTERS
MOV BX, AX; SAVE RESULT

11. Identify the source and destination operand for each of the statements in 10.

Instructions set

8086 has 117 instructions, these instructions divided into 6 groups:

1. Data transfer instructions
2. Arithmetic instructions
3. Logic instructions
4. Shift instructions
5. Rotate instructions
6. Advance instructions

1. Data Transfer Instructions

44



The microprocessor has a group of data transfer instructions that are provided to
move data either between its internal registers or between an internal register and a
storage location in memory. Some of these instructions are:

♣ MOV  use  to  transfer  a  byte  or  a  word of  data  from a  source  operand to a
destination operand. These operands can be internal registers and storage locations
in memory. Notice that the MOV instruction cannot transfer data directly between
a source and a destination that both reside in external memory. For instance, flag
bits  within  the  microprocessors  are  not  modified  by  execution  of  a  MOV
instruction.

EXAMPLES:

1. MOV DX, CS where DX=0100H

    DX=CS=0100H

2. MOV SUM, AX DS=0200 H  SUM=1212H

     PA=02000H+1212H = 03212H

    AL Memory location 03212H

    AH Memory location 03213H

4. If DS contain 1234H what is the effect of executing the instruction MOV
CX,[0ABCDH] 

     CL loaded with the content of Memory location 1234H + ABCDH = 1CF0DH

     And CH is loaded with the content of Memory location 1234H + ABCDH +1
= 1CF0EH

♣ XCHG:  in  MOV instruction the original  contents  of  the source location are
preserved and the original contents of the destination are destroyed. But  XCHG
instruction  can  be  used  to  swap  data  between  two general  purpose  register  or
between a general purpose register and storage location in memory.

EXAMPLES:

1. XCHG AX, DX  (AX)  (DX)

45



2. XCHG SUM, BX

   (DS (0) + SUM)  BX
   DS=02000 H + 1234 H =03234H

   (3234)  (BL)

   (3235)  (BH)

2. Arithmetic Instructions

Arithmetic instructions includes instructions for the addition, subtractions can be
performed on numbers expressed in a variety of numeric data formats. The status
that results from the execution of an arithmetic instruction is recoded in the flags of
the microprocessor. The flags that are affected by arithmetic instructions are CF,
AF, SF, ZF, and PF.

♣ Addition: ADD, ADC, and INC
- ADD AX,BX
  AX= AX+BX

EXAMPLE:

AX= 1100H, BX=0ABCH ADD AX, BX
1100H+ 0ABCH = 1BBCH = AX

- ADC AX, BX
  AX=AX+BX+CF

- INC AH
  AH= AH +1

EXAMPLE:

The original contents of AX, BL, memory location SUM, and CF are AX=1234H,
BL= ABH, Sum=00CDH and CF=0 respectively, describe the result of execution the
following sequence of instruction:

46



ADD AX, SUM
ADC BL, 05H

INC SUM

1. AX= 1234H + 00CDH = 4301H CF=0
2. BL= ABH +05H +0=B0H CF=0
3. SUM=00CDH + 1=00CEH CF=0

♣ Subtraction: SUB, SBB, DEC, and NEG
- SUB AX, BX
AX=AX – BX

- SBB AX, BX
AX= AX - BX – CF

EXAMPLE:

BX=1234H, CX=0123H, CF=0
SBB BX, CX
BX=1234H-0123H-0 =1111H

- DEC subtract 1 from its operand
- NEG BX (2's complement)

00H – BX
0000 + 2's complement of BX

EXAMPLE:

47



♣ Multiplication and Division MUL, DIV

- MUL CL
  (AX)= AL* CL

- MUL CX
  (DX, AX) = AX * CX

- DIV CL
  (AH), (AL) = AX/CL
And AL the quotient
Where AH is the reminder

- DIV CX
  DX, AX= (DX,AX)/CX
  AX contain the Quotient
  DX contain the reminder

EXAMPLE:

 MUL CL where   AL=-1    CL= -2
AX= FF H * FE H = FD02 H

3. Logical Instructions (AND, OR, XOR, NOT)

48



4. Shift Instructions
The four types of shift instructions can perform two basic types of shift operations.
They are the logical shift  and arithmetic shift.  Each of these operations can be
performed to the right or to the left.

49



5. Rotate Instructions

♣ ROL (Rotate Left)

♣ ROR (Rotate Right)

♣ RCL (Rotate Carry Left)

50



♣ RCR (Rotate Carry Right)

5. Advance instruction (Program and Control Instruction)
In  this  section  many  of  instructions  that  can  be  executed  by  the  8086
microprocessor are described, furthermore, these instructions use to write simple
programs. The following topics are discussed in this section:

1. Flag control instructions
2. Compare instruction
3. Jump instructions
4. String instruction

1. Flag Control Instruction
The 8086 microprocessor  has a set  of  flags which either  monitor  the status of
executing instruction or control options available in its operation. The instruction
set includes a group of instructions which when execute directly affect the setting
of the flags. The instructions are:

LAHF: load AH from flags
SAHF: store AH into flags
CLC: clear carry, CF=0
STC: set carry, CF=1

CMC: complement carry, CF= CF
CLI: clear interrupt, IF=0
STI: set interrupt, IF=1

EXAMPLE:

51



Write an instruction to save the current content of the flags in memory location
MEM1 and then reload the flags with the contents of memory location MEM2 

Solution:
LAHF
MOV MEM1, AH
MOV AH, MEM2
SAHF

2. Compare Instruction
There is an instruction included instruction set which can be used to compare two
8-bit number or 16-bit numbers. It is the compare (CMP) instruction. 

The operands can reside in a storage location in memory,  a register  within the
MPU.  Instruction  Meaning  Format  Operation  Flag  affected  the  process  of
comparison performed by the CMP instruction is basically a subtraction operation.
The source operand is subtracted from the destination operand. However the result
of this subtraction is not saved. Instead, based on the result the appropriate flags
are set or reset.

EXAMPLE: 

Lets the destination operand equals 100110012and that the source operand equals
000110112. Subtraction the source from the destination, we get

         10011001
 00011011

52



Replacing the destination operand with its 2's complement and adding

10011001
 11100101

011111102

1. No carry is generated from bit 3 to bit 4, therefore, the auxiliary carry flag AF is
at logic 0.

2. There is a carry out from bit 7. Thus carry flag CF is set.
3. Even through a carry out of bit 7 is generated; there is no carry from bit 6 to bit

7. This is an overflow condition and the OF flag is set.
4. There are an even number of 1s, therefore, this makes parity flag PF equal to 1.
5. Bit 7 is zero and therefore sign flag SF is at logic 0.
6. The result that is produced is nonzero, which makes zero flag ZF logic 0.

3. JUMP Instruction

The purpose of a jump instruction is to alter the execution path of instructions in
the program. The code segment register and instruction pointer keep track of the
next  instruction  to  be  executed.  Thus  a  jump  instruction  involves  altering  the
contents of these registers. In this way, execution continues at an address other than
that of the next sequential instruction. That is, a jump occurs to another part of the
program.
There two type of jump instructions:

a. Unconditional jump.
b. Conditional jump.

In an  unconditional jump,  no status requirements are imposed for  the jump to
occur. That is, as the instruction is executed, the jump always takes place to change
the  execution  sequence.  See  Figure  17  Instruction  Meaning  Format  Operation
Flags affected

53



Figure 17: Unconditional jump program sequence.

On the other hand, for a conditional jump instruction, status conditions that exist at
the moment the jump instruction is executed decide whether or not the jump will
occur.  If  this  condition  or  conditions  are  met,  the  jump takes  place,  otherwise
execution  continues  with  the  next  sequential  instruction  of  the  program.  The
conditions that can be referenced by a conditional jump instruction are status flags
such as carry (CF), parity (PF), and overflow (OF). See Figure 18. 

54



The following table lists some of the conditional jump instructions:

55



Figure 18: Conditional jump program sequence.
EXAMPLE:

Write a  program to move a block of  N bytes of  data starting at  offset  address
BLK1ADDR to another block starting at offset address BLK2ADDR. Assume that
both blocks are in the same data segment, whose starting point is defined by the
data segment address DATASEGMADDR.

4. Push and POP Instruction

It is necessary to save the contents of certain registers or some other main program
parameters.  These values are  saved by pushing them onto the stack.  Typically,
these  data  correspond  to  registers  and  memory  locations  that  are  used  by  the
subroutine. 
The instruction that is used to save parameters on the stack is the push  (PUSH)
instruction and that used to retrieve them back is the pop (POP) instruction. Notice
a general-purpose register, a segment register (excluding CS), or a storage location
in memory as their operand.

♣ Execution of a PUSH instruction causes the data corresponding to the operand to
be pushed onto the top of the stack. For instance, if the instruction is PUSH AX the
result is as follows:

56



((SP)-1)  (AH)

((SP)-2)  (AL)

(SP)        (SP)-2

This shows that the two bytes of the AX are saved in the stack part of memory and
the stack pointer is decrement by 2 such that it points to the new top of the stack.

♣ On the other hand, if the instruction is 

POP AX 

Its execution results in

(AL)  ((SP))

(AH)  ((SP) + 1)

(SP)   (SP)+2

The saved contents of AX are restored back into the register.

♣ We also can save the contents of the flag register and if saved we will later have
to  restore  them.  These  operations  can  be  accomplished  with  the  push  flags
(PUSHF)  and  pop flags  (POPF)  instructions,  respectively.  Notice  the  PUSHF
save the contents of the flag register on the top of the stack. On the other hand,
POPF returns the flags from the top of the stack to the flag register.

 5. String Instructions

57



The  microprocessor  is  equipped  with  special  instructions  to  handle  string
operations.  By "string" we mean a series  of data  words or  bytes that  reside in
consecutive memory locations.
There are five basic string instructions in the instruction set  of the 8086, these
instruction are:
a. Move byte or work string (MOVS, MOVSB, and MOVSW).
b. Compare string (CMPS).
c. Scan string (SCAS).
d. Load string (LODS)
e. Store string (STOS).

They are called the basic string instructions because each defines and operations
for one element of a string.

Move String

The  instructions  MOVES,  MOVSB,  and  MOVSW all  perform the  same  basic
operation. An element of the string specified by the source index (SI) register with
respect to the current data segment (DS) register is moved to the location specified
by the destination index (DI) register with respect to the current extra segment (ES)
register.

After  the  move  is  complete,  the  contents  of  both  SI  and DI  are  automatically
incremented or decremented by 1 for a byte move and by 2 for a word move.
Remember the fact that the address pointers in SI and DI increment or decrement
depends on how the direction flag DF is set.

Compare Strings and Scan Strings

The  CMPS  instruction  can  be  used  to  compare  two  elements  in  the  same  or
different strings. It subtracts the destination operand from the source operand and
adjusts flags CF, PF, AF, ZF, SF, and OF accordingly. The result of subtraction is
not saved; therefore, the operation does not affect the operands in any way

CMPS BYTE

The source element is pointed to by the address in SI with respect to the current
value in DS and the destination element is specified by the contents of DI relative

58



to the contents of ES. Both SI and DI are updated such that they point to the next
elements in their respective string.

The scan string (SCAS) instruction is similar to CMPS, however, it compares the
byte or word element of the destination string at the physical address derived from
DI and ES to the contents of AL or AX, respectively. The flags are adjusted based
on this result and DI incremented or decremented.

Interrupts (INTs)

Interrupt is a mechanism by which a program's flow of control can be altered, INT
provide a mechanism to transfer control to an interrupt service routine (ISR).

 This mechanism is similar to that of a procedure call however, while procedure
can be invoked only by a procedure call in software. INT can be invoked by both
hardware and software. For instance, when an interrupt signal occurs indicating
that  an external  device,  such as a  printer,  requires service.  The microprocessor
must suspend what it is doing in the main part of the program and pass control to a
special routine that performs the function required by the device.

The section of program to which control is passed is called the interrupt service
routine (ISR). When the microprocessor terminates execution in the main program,
it remembers the location where it left off and then picks up execution with the
first instruction in the service routine. After this routine has rum to completion,
program control is returned to the point where the microprocessor originally left
the main body of the program.

The  interrupts  of  the  microprocessors  include  two  hardware  pins  that  request
interrupts (INTR and NMI), and one hardware pin (INTA) that acknowledges the
interrupt requested through INTR. In addition to the pins, the microprocessor also
has software interrupts INT, INTO, INT3 and BOUND. Two flag bits IF and TF
are also used with the interrupt structure and a special return instruction IRET.

All Interrupt whether HW-initiated or SW-initiated, are identify by an INT-Type
number that is between (0 and 255), this INT number is used to access the interrupt
vector  table  (IVT)  to  get  the  associated  interrupt  vector.  HW interrupt  can  be
masked or disable by manipulating the INT flag using (STI and CLI) instruction.

Interrupt Processing

59



The Interrupt Vector Table (IVT) is located at address 0, each vector takes 4 bytes.
Each vector consist of a (CS:IP) pointer to the associated ISR, 2 byte for specifying
the CS, and 2 byte for the offset (IP) within the CS. As shown in the below Figure
(19).

The IVT layout in the memory since each entry in the IVT is 4 byte long, INT type
is multiplied by 4 to get the corresponding ISR pointer in the table. For example ,
INT 2 can find the ISR pointer at memory address 2*4 =00008H, the first 2 byte at
the specified address are taken as the offset value, and the next 2 byte as the CS
value. Thus executing INT 2 causes the CPU to suspend its current program and
calculate  the  address  in  the  IVT (which  is  2*4=8)  and  read  CS:IP value  and
transfer control to that memory location.

Just like procedure ISR, should end with a (RET) inst to send control back to the
INT program. The interrupt return (IRET) is used for this purpose. On receiving an
INT, flag register is automatically saved on the stack. The INT enable flag is clear.
This disable attending further INT until this flag is set. Usually, this flag is set in
ISR unless there is a special reason to disable other INT.

60



Figure 19

61



The current CS and IP values are pushed onto the stack. In most cases, these value
CS and IP point to the instruction following the current instruction the CS and IP
register are loaded with the address of ISR from the IVI.

When an interrupt occur, the following action are taken:

1. Push flag register on the stack
2. Clear IF and TF
3. Push CS and IP register, on the stack
4. Load CS with the 16-bit data at memory address (INT-type *4+2)
5. Load IP with the 16 bit data at memory address (INT-type *4).

The last instruction of ISR is (IRET) instruction, it actions are:

1. POP the 16-value on top of stack into IP register
2. POP the 16-value on top of stack into CS register
3. POP the 16-value on top of stack into flag register.

Interrupt Type

The 8086 microcomputer is capable of implementing any combination of up to 256
interrupts. They are divided into five groups: external hardware interrupts, software
interrupts,  internal interrupts,  the nonmaskable interrupt, and the reset interrupt.
The function of the external hardware, software, and nonmaskable interrupt and the
rest interrupts can be defined by the user. On the other hand, the internal and reset
interrupts have dedicated system functions.

Software Interrupt (SW INT)

Are initiated by execution an INT instruction the format is 

INT INT-Type
 
Where  INT-Type is  an integer  number  in  the  range 0-255,  thus  a  total  of  256
different types are possible.

62



Hardware Interrupt (HW INT)

This type is usually use by peripheral I/O devices such as KB to alter CPU that
they require its attention. 

HW INT can be divided into Maskable and Non-Maskable (NMI).

A NMI can be generated by applying an electronic signal on the NMI pin this INT
is called NMI because the CPU always respond to this signal. In other word, this
INT cannot be disabling under program control, the NMI cussed by INT2.

 Most HW INT are maskable type, and electronic signal should be applied to the
INTR (interrupt request) input pin of 8086, 8086 recognize the INTR only if IF=1,
thus this INT can be masked or disable by clear IF(IF=0).

NMI vs. Maskable INT

NMI  is  always  attended  to  by  the  CPU immediately.  Note  that  when  we  say
immediately, the CPU does not suspend the execution of the current inst in the
middle, it complete the current inst and then service the INT.

Maskable INT can be delayed until execution reaches a convenient point. As an
example, let us assume that the CPU is execution main program , an INT occur, as
a result, the CPU suspend the main as soon as it finish the current inst of main and
then control is transfer to the ISR. If ISR has to be executed without any interrupt,
the  CPU  can  mask  further  INT  until  ISR  is  complete.  Suppose  that,  while
executing ISR another mskable INT occurs, service to this INT would have to wait
until ISR is completed.

There  are  several  INT  predefined  by  Microprocessor  which  have  dedicated
function this is some of them:

INT 0 Divide error INT the CPU generate an IT type whenever executing a DIV
result in a quotient that is larger than the destination. The default ISR displays a
divide overflow message and terminate a program.

Single Step INT, single step is a useful debugging tool to observe of the behavior
of a program instruction by instruction. To start single stepping the TF bit in flag

63



register should be set (TF=1), when TF=1, the CPU automatically generate a type 1
INT after execution each inst.

To end single step, TF should be cleared, the CPU however does not have any
instruction to manipulate the TF directly 

♣ Set trap flag (TF=1) to start single stepping

PUSHF
POP AX ;COPY FLAGS INTO AX
OR AX, 100H  ;SET TF=1
PUSH AX ;COPY MODIFY FLAG BIT BACK TO FLAG REGISTER
POPF

♣ Clear trap flag (TF=0) to end single stepping

PUSHF
POP AX ; COPY FLAGS INTO AX
AND AX, 0FEFFH, ;CLEAR TF=0
PUSH AX ; COPY MODIFY FLAG BIT BAXK TO FLAG REGISTER
POPF

How can more than one device interrupt?

Computer typically have more than one I/O device requesting interrupt service,
like  keyboard,  hard  disk,  floppy  disk,  printer  all  generate  an  INT when  they
required the attention to CPU.

When more than one device INT CPU, we need a mechanism to priority these INT
(if they come at the same time) and forward only one INT request at a time to the
CPU while keeping other INT request pending for their service.

Input and Output

Input & Output (I/O) devices provide the means by which a computer system can
interact with the outside worlds. 

64



An I/O device can be a purely input device (e.g. KB, Mouse), a purely output
device (printer, screen), or both input and output device like (e.g. disk).

 Regardless of the intended purpose of I/O devices, all communication with these
devices  must  involve  the  system  bus.  However,  I/O  devices  are  not  directly
connected to the system bus. Instead, there is usually, On I/O controller that acts as
an interface between the system and the I/O devices.

Accessing I/O devices

As programmer, you can have direct control to any of the I/O devices (through
their associated I/O controller).

It is a waste of time and effort if everyone had to develop their own routines to
access  I/O  devices.  In  addition  system  resource  could  be  abused  either
intentionally or accidentally. For instance, and improper disk drive could erase the
content of a disk due to a bug in the driver routine.

To avoid this problem and to provide a standard way of accessing I/O devices, OS
provide routine to convent all access I/O devices. Typically, access to I/O devices
can be obtain from two layer of system software, the basic I/O system (BIOS) and
the OS,BIOS is ROM resident and is a collection of routine that control the I/O
devices.  Both  provide  access  to  routine  that  control  I/O  devices  through  a
mechanism called INT (interrupt).

I/O Address Space and Data Transfer

As we know I/O ports in the 8086 MPU can be either byte wide or word wide. The
port that is accessed for input or output of data is selected by an I/O address. The
address is specified as port of the instruction that performs the I/O operation.

 I/O addresses are 16 bit in length and are output by the 8086 to the I/O interface
over  bus  lines  AD0  through  AD15,  the  most  significant  bit  A16-A19  of  the
memory address are held at the 0 logic (not used).

Below Figure 20 show a map of I/O address space of the 8086 system. This is an
independent 64-KB address space that is dedicated for I/O devices. Notice that its
address  range  is  from  000016-FFFF16.  Moreover,  notice  that  the  eight  ports

65



located from address 00F8 to 00FF are specified as reserved. These port addresses
are reserved by Intel for use in their future HW and SW products.

Figure 20: I/O Address Space

Data transfer between the MPU and I/O devices are performed over the data bus.
Word transfer take place over the complete data bus D0 to D15, and can required
either one or two bus cycle.

Ports: a port is a device that connects the processor to the external world through a
port processor, receive a signal from an input device and send a signal to an output
device.

Input / Output Instruction
The instruction set contains one type of instruction that transfer information to an
I/O device (OUT) and another to read information from an I/O device (IN).

• ACC = AL or AX

66



Example 1: write a sequence of inst that will output FF16 to a byte wide output
port at address AB16 of the I/O addresses space.
Solution: first the AL register is loaded with FF16 as an immediate operand in the
instruction

MOV AL, 0FFH

Now the data in AL can be output to the byte wide output port with the instruction

OUT 0ABH, AL

Example2: write a series of instruction that will output FF16 to an output port
located at address B00016 of the I/O address space.

Solution  : the DX register must first be loaded with the address of the output port

MOV DX, 0B000H

Next, the data that is to be output must be loaded into AL

MOV AL, 0FFH

Finally, the data are output with the instruction

OUT DX, AL

Example 3: data are to be read in from two byte wide input port at address AA16
and A916 respectively,  and then output  to  a  word wide  output  port  at  address
B00016. Write a sequence of instruction to perform this I/O operation:

Solution: we first read in a byte from the port at address AA16 into AL and move
it to AH

IN AL, 0AA16

MOV AH, AL

The other byte can be read into AL

IN AL, 0A9H

67



To writhe out the word of data in AX, we can load DX with the addressB00016 and
use a variable output instruction

MOV DX, 0B000H

OUT DX, AX

Isolated and Memory I/O
There are two different method of interfacing I/O to the MPU. In the isolated I/O
scheme, the IN, OUT instruction transfer data between the MPU (ACC or memory)
and the I/O device. 

Isolated I/O:  it is the most common I/O transfer techniques. The addressed for
insolated I/O device, called ports, are separate from the memory. Because the ports
are separate from the memory, because the ports are separate. The user can expand
the memory to its full size without using any of memory space for I/O device. A
disadvantage of isolated I/O is that, the data transferred between I/O and the MPU
must be accessed by the IN, OUT instruction. See Figure 21.

Figure 21: Isolated I/O.

Memory- Map I/O: Unlike isolated I/O, memory mapped I/O does not use the IN
or OUT instruction. Instead, it uses any instruction that transfer data between the
MPU and memory. A memory mapped I/O device is treated as a memory location
in memory map. The main advantage of memory-mapped I/O is that any memory
transfer instruction can be used to access the I/O. The main disadvantage is that a
portion of the memory systems used as the I/O map. This reduced the amount of
memory available to application. See Figure 22.

68



Figure 22: Memory-Mapped I/O

69


	Basic Block Diagram of Microprocessor:

